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Abstract. We have shown that the renormalization group fired paint far mutually avoiding 
directed random walks in ( d  + I )  dimensions is exactly 2 m  where E = 2 - d, with no higher 
order terms in E. Since the whole calculation can be carried out to all orders exactly, the 
model i s  also significant fmm a pedagogical point of view. 

A directed random walker (DRW) in D = d + 1 dimensions always takes steps in one 
particular direction (to be chosen as the z axis) but can fluctuate in the transverse d 
directions. Such walks, though of interest on their own, have also emerged as a viable 
statistical model from various physical problems such as polymers in random media 
(see, e.g., Kardar and Zhang 1987, Cook and Derrida 19891, two-dimensional com- 
mensurate-incommensurate phase transitions (see, e.g., Fisher 1984, Nagle et a1 1989), 
biomembrane phase transitions (Izuyama and Akutsu 1982, Bhattacharjee et al 1983, 
Priezzhev and Terletsky 1989), flux lattice melting in high G materials (Nelson and 
Seung 1989), world lines of anyons (Wu 1984) and the five-vertex model (Wu 1968, 
Bhattacharjee 1990). It is the preference for a particular direction that makes DRW a 
relatively simpler model to study rigorously and, in fact, many non-trivial properties 
of a DRW are known more or less exactly or rigorously (see, e.g., Privman and Svrakic 
1989, also Binder et a1 1990). In most of the examples cited above, the physics is 
determined by the properties of many mutually avoiding DRWS where two chains cannot 
be at the same position if they have the same z-coordinate, as shown in figure 1. Our 
interest in this letter is in such a many-chain system. 

Nelson and Seung (1989), in their studies of flux lattice melting in high T, super- 
conductors, introduced a path integral approach for many DRWS, along the line of the 
Edwards model for conventional polymers with excluded volume interaction (see, e.g., 

Figure I. A schematic diagram of many DRWS in 1+1 dimensions. Mutual avoidance 
forbids a configuration such as C. 
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Freed 1987, Oono 1984). In this continuum approach, the upper critical dimension 
follows from a simple dimensional analysis to be d,=2. Using a momentum shell 
technique Nelson and Seung (1989) showed that the fixed point of the renormalization 
group transformation is from 2 m  to O( E) where E = 2 - d. Here we show, using the 
dimensional regularization method, that the fixed point is exactly 2 m  to all orders of 
the perturbation theory. 

Locating the fixed point exactly is, on  its own, of significance and it is also expected 
to throw much light on the various physical problems mentioned earlier. We wish to 
come back to this point elsewhere, but would like to point out the pedagogic importance 
of this result. The renormalization group approach and the associated techniques such 
as the dimensional regularization, minimal subtraction method, etc. borrowed from 
field theory and statistical mechanics, have been shown over the years to be the tool 
for understanding, both qualitatively and quantitatively, the properties of polymers 
especially in the Edwardian path integral formulation (Oono 1984, Freed 1987 and 
references therein). In this context the model of this letter stands out as a unique 
example where all of the above techniques can be seen in action and can be carried 
out to any arbitrary order unlike the conventional polymers. Hence the importance of 
this model as a paradigm just as the O( N) model in the N + 00 limit for field theories 
(Amit 1984). 

Our approach here is to use the path integral method to calculate the second virial 
coefficient in a diagrammatic expansion. Such an expansion, for sure, stumbles on 
divergences which are to be treated by renormalization. We show how this renormaliz- 
ation can be implemented exactly to all orders in the perturbation theory. The exactness 
of the renormalized form is proved in two steps; first by establishing uniqueness and 
then by showing that a particular ansatz (an educated guess) works. The fixed point 
then follows from calculating the p-function. The exactness of the location of the fixed 
point is just a corollary of the exactness of the renormalized interaction. 

Model. The DRWS in D = d + 1 dimensions can equivalently be thought of as random 
walkers or polymer chains in the transverse d-directions with the z-coordinate playing 
the role of the contour variable; the chains would be the projections of the DRWS in 
the transverse directions. The important interaction for the D R W ~  is the mutual exclusion 
at each z-coordinate and this, in the equivalent polymer picture, means that the 
d-dimensional chains interact repulsively, if and only if, they have the same contour 
variable z. We represent this short-ranged repulsive potential by a &function. In the 
spirit of the Edwards model (Edwards 1965) for conventional polymers, the dimension- 
less Hamiltonian for M such DRWS can be written as 

where ra(z) is the (d-dimensional) coordinate of the point at contour length z of chain 
a. The first term on the RHS is the usual entropic contribution of each polymer of total 
length No while the second term ensures the mutual repulsion at the same z of chains 
a and p, with U,, as the interaction strength and the summation over all pairs (a < p ) .  

The thermodynamics of the many chain system is characterized by the osmotic 
pressure, or equivalently, the second virial coefficient (see, e.g., Freed 1987 and Oono 
1984). As is well known, the second vinal coefficient is completely determined by two 
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chains and, therefore, in this paper we consider only the two chain problem (M = 2 
in (1)). 

A simple dimensional analysis of the parameters in the Hamiltonian in (1) shows 
that [ N o ]  - L2 and [uol - Ld-', identifying d = 2 as the upper critical dimension. We 
would, therefore, be requiring an expansion in E = 2 - d, so that the divergences in the 
perturbation theory for U, would appear as singularities at E =O. Such divergences will 
be cured by regularization and renormalization. It might be pointed out here that since 
there is no intrachain (or self) interaction, there will be no renormalization of N o ,  
only a renormalization of uo is required. It is this feature that makes DRWS comparatively 
simpler than polymers. 

Second uirial coeficient. The second vinal coefficient is defined as 

where Z2(No,  N o ,  uo) is the partition function of two interacting D R W ~  and Z , ( N o )  is 
that of one DRW. The partition function is defined as 

z , ( N o ,  N o ,  uo) = j ar,  ar2 e-" 

where the integral is over all possible configurations ('paths') of the chains. 2, is also 
defined similarly. 

A diagrammatic expansion of A, in vo can be set up as for conventional polymers 
by expanding the Boltzmann factor involving uo. It is a simple exercise to show that, 
thanks to the normalization by Z : ( N o ) ,  only connected diagrams contribute to A,. 
Furthermore, the special (equal z )  interaction produces only ladder type diagrams as 
shown in figure 2. The broken lines in the figure represent the interaction and contribute 
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Figure 2. Ladder diagrams needed for the second virial coefficient. The diagram for n 
loops requires interactions at ( n + l )  positions along the chain and its evaluatian involves 
integrations over these positions. 
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a factor U,, each. The full lines are the polymers, representing the distribution function 

for a random walk of length z going from I ,  to r,. Each loop in figure 2 represents 
an integration over the internal coordinate. For example, the one-loop contribution 
(figure 2 ( b ) )  is proportional to ( V  is the total volume) 

W!!' V 
[ 1 +( 1 - d / 2 ) ] (  1 - d / 2 ) '  

Without going into any further details (to be published elsewhere) we quote the general 
result for the second vinal coefficient as 

As anticipated, each term is divergent at d = 2. 

Renormalization. We introduce an arbitrary length scale L to define a dimensionless 
coupling constant uo as 

ua = u&-d 

U,,= u ( l + D , u + D 2 u 2 + .  . .). (4) 

and define a renormalized interaction U as 

The coefficients (D,) are to be determined to absorb the divergences in (3) order 
by order. It is straightforward but tedious to show that at the nth order ( n  loop level), 
the coefficient Dn in determined ~?niqoe!y by !he preceding D,s ( i  < n) snd the- t c ~ . s  
of (3) with order of ua less than n. In other words a D. once determined at the nth 
order will remain unaffected even if higher-order terms in (3) are considered. Hence 
the uniqueness. 

By direct computation, we find that up to O(u6) 

Dp = ( 2 T E ) - ' .  (5) 

Based on this, we make the ansatz that (5) is true for all p. The summation in (4) can 
he performed easily to get 

2?rau -- U 
U,, = 

1 - U  f2T.C - 2 T S  - U' 
When this renormalized U is substituted in (3) we obtain 

with 

Since r( ~ / 2 )  has a pole [ r (x )  - I / x  as x + 01, we find Y,  in terms of the renormalized 
U, to he non-divergent. Moreover, the sum in (7) is well behaved and cancels the 
apparent divergence at U = 2 m .  An appeal to uniqueness (just proved) then establishes 
(6) as the correct renormalization. 
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Fixedpoint. The fixed point for RG is determined by the zero of the p-function defined 
as 

Using the exact relation between U and uo as given by (6 ) ,  we find 

p ( U )  = u E ( 1  - U / Z ? T E )  

which, incidentally, is identical to the p-function at the one loop level. The fixed point, 
p ( u * ) = O ,  is then 

U* = h E  

which, to emphasize one more time, is an exact result valid to all orders of the 
perturbation theory. QED. 

We thank S Suresh Rao for helpful discussions. 

Note added. We thank B Duplanticr for pointing aut that the sum in (7) far A,,, in the limit U- U* can 
be performed and is related to equation (18) of Duplantier B 1989 Phys. Rev. Lett. 62 2337. 

References 

Ami1 D J 1984 Field Theory, the Renonnnlizorion Group, and CriticolPhenomeno (Singapore: World Scientific) 
Bhattacharjee S M, Nagle 1 F, Huse D A and Fisher M E 1983 3. Star. Phys. 32 361 
Bhatlacharjee S M 1990 Preprinl 
Binder P-M, Owaarek A L, Veal A R a n d  Yeomans J M 1990 3. Phys. A: Math. Gen. 23 L975 
Cook J and Demida B 1989 3. Slat. Phys. 57 89 
Edwards S F 1965 Proc. Phys. Soc. 85 613 
Fisher M E 1984 3. Slot. Phys. 34 667 
Freed K F 1987 Renormalization Group Theory of Mocmmolecules (New York Wiley) 
Izuyama T and Akutsu Y 1982 1. Phys. Soc. Japan 51 50 
Kardar M and Zhang Y C 1987 Phys. Rev. Leu. 58 2087 
Nagle J F, Yokoi C S 0 and Bhattacharjee S M 1989 Phose Tronsitionr and Critical Phenomena ed C Domb 

and J L Lebowitz, VOI 13 (New York Academic) 
Nelson D R and Seung H S 1989 Phys. Rev. 39 9153 
Priezzhev V B a n d  Terletsky S A 1989 3. Physique M 599 
Privman V and Svrakic N M 1989 Directed Models of Polymers, Inrer/oces, ond Clusters: Scaling ond Finite 

Oono Y 1984 Ado. Chrm. Phys. 61 301 
Wu F Y 1968 Phys. Rev. 168 539 
Wu Y-S 1984 Phys. Rev. Lett. 52 2103 

Sire Properties (Lecture N o m  in Physics 38) (Berlin: Springer) 


